

Dr. Ahmed M. ElShafee

Dr. Ahmed ElShafee, ACU : Summer 2014, Introduction to CS

1

Part (05)
Introduction to programming

with Python

2

 code or source code: The sequence of instructions in a program.

 syntax: The set of legal structures and commands that can be
used in a particular programming language.

 output: The messages printed to the user by a program.

 console: The text box onto which output is printed.

 Some source code editors pop up the console as an external window,
and others contain their own console window.

Programming basics

2

3

Compiling and interpreting
 Many languages require you to compile (translate) your program

into a form that the machine understands.

 Python is instead directly interpreted into machine instructions.

compile execute

output source code
Hello.java

byte code
Hello.class

interpret

output source code
Hello.py

3

4

Expressions
 expression: A data value or set of operations to compute a value.

 Examples: 1 + 4 * 3

 42

 Arithmetic operators we will use:

 + - * / addition, subtraction/negation, multiplication, division

 % modulus, a.k.a. remainder

 ** exponentiation

 precedence: Order in which operations are computed.

 * / % ** have a higher precedence than + -

1 + 3 * 4 is 13

 Parentheses can be used to force a certain order of evaluation.

(1 + 3) * 4 is 16

4

5

Integer division
 When we divide integers with / , the quotient is also an integer.

 3 52

 4) 14 27) 1425

 12 135

 2 75

 54

 21

 More examples:
 35 / 5 is 7

 84 / 10 is 8

 156 / 100 is 1

 The % operator computes the remainder from a division of integers.

 3 43
 4) 14 5) 218
 12 20
 2 18
 15
 3

5

6

Real numbers
 Python can also manipulate real numbers.

 Examples: 6.022 -15.9997 42.0 2.143e17

 The operators + - * / % ** () all work for real numbers.

 The / produces an exact answer: 15.0 / 2.0 is 7.5

 The same rules of precedence also apply to real numbers:
Evaluate () before * / % before + -

 When integers and reals are mixed, the result is a real number.

 Example: 1 / 2.0 is 0.5

 The conversion occurs on a per-operator basis.
 7 / 3 * 1.2 + 3 / 2

 2 * 1.2 + 3 / 2

 2.4 + 3 / 2

 2.4 + 1

 3.4

6

7

Math commands
 Python has useful commands for performing calculations.

 To use many of these commands, you must write the following at
the top of your Python program:
from math import *

Command name Description

abs(value) absolute value

ceil(value) rounds up

cos(value) cosine, in radians

floor(value) rounds down

log(value) logarithm, base e

log10(value) logarithm, base 10

max(value1, value2) larger of two values

min(value1, value2) smaller of two values

round(value) nearest whole number

sin(value) sine, in radians

sqrt(value) square root

Constant Description

e 2.7182818...

pi 3.1415926...

7

http://docs.python.org/lib/module-math.html

8

Variables
 variable: A named piece of memory that can store a value.

 Usage:
 Compute an expression's result,
 store that result into a variable,
 and use that variable later in the program.

 assignment statement: Stores a value into a variable.
 Syntax:

 name = value

 Examples: x = 5

 gpa = 3.14

 x 5 gpa 3.14

 A variable that has been given a value can be used in expressions.
 x + 4 is 9

 Exercise: Evaluate the quadratic equation for a given a, b, and c.
8

9

 print : Produces text output on the console.

 Syntax:

 print "Message"

 print Expression

 Prints the given text message or expression value on the console, and
moves the cursor down to the next line.

 print Item1, Item2, ..., ItemN

 Prints several messages and/or expressions on the same line.

 Examples:
 print "Hello, world!"

 age = 45

 print "You have", 65 - age, "years until retirement"

Output:

 Hello, world!

 You have 20 years until retirement

print

9

10

 input : Reads a number from user input.

 You can assign (store) the result of input into a variable.

 Example:
 age = input("How old are you? ")
 print "Your age is", age
 print "You have", 65 - age, "years until retirement"

 Output:

 How old are you? 53
 Your age is 53
 You have 12 years until retirement

 Exercise: Write a Python program that prompts the user for
his/her amount of money, then reports how many Nintendo Wiis
the person can afford, and how much more money he/she will
need to afford an additional Wii.

input

10

11

Repetition (loops)
and Selection (if/else)

11

12

The for loop
 for loop: Repeats a set of statements over a group of values.

 Syntax:

 for variableName in groupOfValues:

 statements

 We indent the statements to be repeated with tabs or spaces.

 variableName gives a name to each value, so you can refer to it in the statements.

 groupOfValues can be a range of integers, specified with the range function.

 Example:

 for x in range(1, 6):

 print x, "squared is", x * x

 Output:
 1 squared is 1

 2 squared is 4

 3 squared is 9

 4 squared is 16

 5 squared is 25

12

13

range
 The range function specifies a range of integers:

 range(start, stop) - the integers between start (inclusive)

 and stop (exclusive)

 It can also accept a third value specifying the change between values.
 range(start, stop, step) - the integers between start (inclusive)

 and stop (exclusive) by step

 Example:
 for x in range(5, 0, -1):

 print x

 print "Blastoff!"

 Output:
 5
 4
 3
 2
 1
 Blastoff!

 Exercise: How would we print the "99 Bottles of Beer" song?

13

14

Cumulative loops
 Some loops incrementally compute a value that is initialized outside

the loop. This is sometimes called a cumulative sum.

 sum = 0

 for i in range(1, 11):

 sum = sum + (i * i)

 print "sum of first 10 squares is", sum

 Output:

 sum of first 10 squares is 385

 Exercise: Write a Python program that computes the factorial of an
integer.

14

15

if
 if statement: Executes a group of statements only if a certain

condition is true. Otherwise, the statements are skipped.

 Syntax:
 if condition:
 statements

 Example:
 gpa = 3.4

 if gpa > 2.0:

 print "Your application is accepted."

15

16

if/else
 if/else statement: Executes one block of statements if a certain

condition is True, and a second block of statements if it is False.

 Syntax:
 if condition:
 statements
 else:

 statements

 Example:
 gpa = 1.4

 if gpa > 2.0:

 print "Welcome to Mars University!"

 else:

 print "Your application is denied."

 Multiple conditions can be chained with elif ("else if"):
 if condition:
 statements
 elif condition:
 statements
 else:

 statements

16

17

while
 while loop: Executes a group of statements as long as a condition is True.

 good for indefinite loops (repeat an unknown number of times)

 Syntax:

 while condition:

 statements

 Example:

 number = 1

 while number < 200:

 print number,

 number = number * 2

 Output:

 1 2 4 8 16 32 64 128

17

18

Logic
 Many logical expressions use relational operators:

 Logical expressions can be combined with logical operators:

 Exercise: Write code to display and count the factors of a number.

Operator Example Result

and 9 != 6 and 2 < 3 True

or 2 == 3 or -1 < 5 True

not not 7 > 0 False

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

18

19

Text and File Processing

19

20

 string: A sequence of text characters in a program.

 Strings start and end with quotation mark " or apostrophe ' characters.

 Examples:

"hello"

"This is a string"

"This, too, is a string. It can be very long!"

 A string may not span across multiple lines or contain a " character.
"This is not

a legal String."

 "This is not a "legal" String either."

 A string can represent characters by preceding them with a backslash.
 \t tab character

 \n new line character

 \" quotation mark character

 \\ backslash character

 Example: "Hello\tthere\nHow are you?"

Strings

20

21

Indexes
 Characters in a string are numbered with indexes starting at 0:

 Example:

 name = "P. Diddy"

 Accessing an individual character of a string:

 variableName [index]

 Example:

 print name, "starts with", name[0]

 Output:

 P. Diddy starts with P

index 0 1 2 3 4 5 6 7

character P . D i d d y

21

22

String properties
 len(string) - number of characters in a string

 (including spaces)

 str.lower(string) - lowercase version of a string

 str.upper(string) - uppercase version of a string

 Example:
 name = "Martin Douglas Stepp"

 length = len(name)

 big_name = str.upper(name)

 print big_name, "has", length, "characters"

 Output:

 MARTIN DOUGLAS STEPP has 20 characters

22

23

 raw_input : Reads a string of text from user input.

 Example:
 name = raw_input("Howdy, pardner. What's yer name? ")

 print name, "... what a silly name!"

 Output:

 Howdy, pardner. What's yer name? Paris Hilton

 Paris Hilton ... what a silly name!

raw_input

23

24

Text processing
 text processing: Examining, editing, formatting text.

 often uses loops that examine the characters of a string one by one

 A for loop can examine each character in a string in sequence.

 Example:

 for c in "booyah":

 print c

 Output:
 b
 o
 o
 y
 a
 h

24

25

Strings and numbers
 ord(text) - converts a string into a number.

 Example: ord("a") is 97, ord("b") is 98, ...

 Characters map to numbers using standardized mappings such as
ASCII and Unicode.

 chr(number) - converts a number into a string.

 Example: chr(99) is "c"

 Exercise: Write a program that performs a rotation cypher.

 e.g. "Attack" when rotated by 1 becomes "buubdl"

25

26

File processing
 Many programs handle data, which often comes from files.

 Reading the entire contents of a file:

variableName = open("filename").read()

Example:

file_text = open("bankaccount.txt").read()

26

27

Line-by-line processing
 Reading a file line-by-line:

for line in open("filename").readlines():

 statements

Example:

count = 0

for line in open("bankaccount.txt").readlines():

 count = count + 1

print "The file contains", count, "lines."

 Exercise: Write a program to process a file of DNA text, such as:

 ATGCAATTGCTCGATTAG

 Count the percent of C+G present in the DNA.

27

28

Graphics

28

29

DrawingPanel
 To create a window, create a drawingpanel and its graphical pen,

which we'll call g :

 from drawingpanel import *
 panel = drawingpanel(width, height)
 g = panel.get_graphics()

 ... (draw shapes here) ...

 panel.mainloop()

 The window has nothing on it, but we can draw shapes and
lines on it by sending commands to g .

 Example:

 g.create_rectangle(10, 30, 60, 35)

 g.create_oval(80, 40, 50, 70)

 g.create_line(50, 50, 90, 70)

29

30

Graphical commands

Command Description

g.create_line(x1, y1, x2, y2) a line between (x1, y1), (x2, y2)

g.create_oval(x1, y1, x2, y2) the largest oval that fits in a box with
top-left corner at (x1, y1) and
bottom-left corner at (x2, y2)

g.create_rectangle(x1, y1, x2, y2) the rectangle with top-left corner at
(x1, y1), bottom-left at (x2, y2)

g.create_text(x, y, text="text") the given text at (x, y)

 The above commands can accept optional outline and fill colors.
g.create_rectangle(10, 40, 22, 65, fill="red", outline="blue")

 The coordinate system is y-inverted:
(0, 0)

 (200, 100)
30

31

Drawing with loops
 We can draw many repetitions of the same item at different x/y

positions with for loops.

 The x or y assignment expression contains the loop counter, i, so that
in each pass of the loop, when i changes, so does x or y.

from drawingpanel import *

window = drawingpanel(500, 400)

g = window.get_graphics()

for i in range(1, 11):

 x = 100 + 20 * i

 y = 5 + 20 * i

 g.create_oval(x, y, x + 50, y + 50, fill="red")

window.mainloop()

 Exercise: Draw the figure at right.

31

Thanks,..

See you next week (ISA),…

Dr. Ahmed ElShafee, ACU : Summer 2014, Introduction to CS 32

