

Dr. Ahmed M. ElShafee

Dr. Ahmed ElShafee, ACU : Summer 2014, Introduction to CS

1

Part (05)
Introduction to programming

with Python

2

 code or source code: The sequence of instructions in a program.

 syntax: The set of legal structures and commands that can be
used in a particular programming language.

 output: The messages printed to the user by a program.

 console: The text box onto which output is printed.

 Some source code editors pop up the console as an external window,
and others contain their own console window.

Programming basics

2

3

Compiling and interpreting
 Many languages require you to compile (translate) your program

into a form that the machine understands.

 Python is instead directly interpreted into machine instructions.

compile execute

output source code
Hello.java

byte code
Hello.class

interpret

output source code
Hello.py

3

4

Expressions
 expression: A data value or set of operations to compute a value.

 Examples: 1 + 4 * 3

 42

 Arithmetic operators we will use:

 + - * / addition, subtraction/negation, multiplication, division

 % modulus, a.k.a. remainder

 ** exponentiation

 precedence: Order in which operations are computed.

 * / % ** have a higher precedence than + -

1 + 3 * 4 is 13

 Parentheses can be used to force a certain order of evaluation.

(1 + 3) * 4 is 16

4

5

Integer division
 When we divide integers with / , the quotient is also an integer.

 3 52

 4) 14 27) 1425

 12 135

 2 75

 54

 21

 More examples:
 35 / 5 is 7

 84 / 10 is 8

 156 / 100 is 1

 The % operator computes the remainder from a division of integers.

 3 43
 4) 14 5) 218
 12 20
 2 18
 15
 3

5

6

Real numbers
 Python can also manipulate real numbers.

 Examples: 6.022 -15.9997 42.0 2.143e17

 The operators + - * / % ** () all work for real numbers.

 The / produces an exact answer: 15.0 / 2.0 is 7.5

 The same rules of precedence also apply to real numbers:
Evaluate () before * / % before + -

 When integers and reals are mixed, the result is a real number.

 Example: 1 / 2.0 is 0.5

 The conversion occurs on a per-operator basis.
 7 / 3 * 1.2 + 3 / 2

 2 * 1.2 + 3 / 2

 2.4 + 3 / 2

 2.4 + 1

 3.4

6

7

Math commands
 Python has useful commands for performing calculations.

 To use many of these commands, you must write the following at
the top of your Python program:
from math import *

Command name Description

abs(value) absolute value

ceil(value) rounds up

cos(value) cosine, in radians

floor(value) rounds down

log(value) logarithm, base e

log10(value) logarithm, base 10

max(value1, value2) larger of two values

min(value1, value2) smaller of two values

round(value) nearest whole number

sin(value) sine, in radians

sqrt(value) square root

Constant Description

e 2.7182818...

pi 3.1415926...

7

http://docs.python.org/lib/module-math.html

8

Variables
 variable: A named piece of memory that can store a value.

 Usage:
 Compute an expression's result,
 store that result into a variable,
 and use that variable later in the program.

 assignment statement: Stores a value into a variable.
 Syntax:

 name = value

 Examples: x = 5

 gpa = 3.14

 x 5 gpa 3.14

 A variable that has been given a value can be used in expressions.
 x + 4 is 9

 Exercise: Evaluate the quadratic equation for a given a, b, and c.
8

9

 print : Produces text output on the console.

 Syntax:

 print "Message"

 print Expression

 Prints the given text message or expression value on the console, and
moves the cursor down to the next line.

 print Item1, Item2, ..., ItemN

 Prints several messages and/or expressions on the same line.

 Examples:
 print "Hello, world!"

 age = 45

 print "You have", 65 - age, "years until retirement"

Output:

 Hello, world!

 You have 20 years until retirement

print

9

10

 input : Reads a number from user input.

 You can assign (store) the result of input into a variable.

 Example:
 age = input("How old are you? ")
 print "Your age is", age
 print "You have", 65 - age, "years until retirement"

 Output:

 How old are you? 53
 Your age is 53
 You have 12 years until retirement

 Exercise: Write a Python program that prompts the user for
his/her amount of money, then reports how many Nintendo Wiis
the person can afford, and how much more money he/she will
need to afford an additional Wii.

input

10

11

Repetition (loops)
and Selection (if/else)

11

12

The for loop
 for loop: Repeats a set of statements over a group of values.

 Syntax:

 for variableName in groupOfValues:

 statements

 We indent the statements to be repeated with tabs or spaces.

 variableName gives a name to each value, so you can refer to it in the statements.

 groupOfValues can be a range of integers, specified with the range function.

 Example:

 for x in range(1, 6):

 print x, "squared is", x * x

 Output:
 1 squared is 1

 2 squared is 4

 3 squared is 9

 4 squared is 16

 5 squared is 25

12

13

range
 The range function specifies a range of integers:

 range(start, stop) - the integers between start (inclusive)

 and stop (exclusive)

 It can also accept a third value specifying the change between values.
 range(start, stop, step) - the integers between start (inclusive)

 and stop (exclusive) by step

 Example:
 for x in range(5, 0, -1):

 print x

 print "Blastoff!"

 Output:
 5
 4
 3
 2
 1
 Blastoff!

 Exercise: How would we print the "99 Bottles of Beer" song?

13

14

Cumulative loops
 Some loops incrementally compute a value that is initialized outside

the loop. This is sometimes called a cumulative sum.

 sum = 0

 for i in range(1, 11):

 sum = sum + (i * i)

 print "sum of first 10 squares is", sum

 Output:

 sum of first 10 squares is 385

 Exercise: Write a Python program that computes the factorial of an
integer.

14

15

if
 if statement: Executes a group of statements only if a certain

condition is true. Otherwise, the statements are skipped.

 Syntax:
 if condition:
 statements

 Example:
 gpa = 3.4

 if gpa > 2.0:

 print "Your application is accepted."

15

16

if/else
 if/else statement: Executes one block of statements if a certain

condition is True, and a second block of statements if it is False.

 Syntax:
 if condition:
 statements
 else:

 statements

 Example:
 gpa = 1.4

 if gpa > 2.0:

 print "Welcome to Mars University!"

 else:

 print "Your application is denied."

 Multiple conditions can be chained with elif ("else if"):
 if condition:
 statements
 elif condition:
 statements
 else:

 statements

16

17

while
 while loop: Executes a group of statements as long as a condition is True.

 good for indefinite loops (repeat an unknown number of times)

 Syntax:

 while condition:

 statements

 Example:

 number = 1

 while number < 200:

 print number,

 number = number * 2

 Output:

 1 2 4 8 16 32 64 128

17

18

Logic
 Many logical expressions use relational operators:

 Logical expressions can be combined with logical operators:

 Exercise: Write code to display and count the factors of a number.

Operator Example Result

and 9 != 6 and 2 < 3 True

or 2 == 3 or -1 < 5 True

not not 7 > 0 False

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

18

19

Text and File Processing

19

20

 string: A sequence of text characters in a program.

 Strings start and end with quotation mark " or apostrophe ' characters.

 Examples:

"hello"

"This is a string"

"This, too, is a string. It can be very long!"

 A string may not span across multiple lines or contain a " character.
"This is not

a legal String."

 "This is not a "legal" String either."

 A string can represent characters by preceding them with a backslash.
 \t tab character

 \n new line character

 \" quotation mark character

 \\ backslash character

 Example: "Hello\tthere\nHow are you?"

Strings

20

21

Indexes
 Characters in a string are numbered with indexes starting at 0:

 Example:

 name = "P. Diddy"

 Accessing an individual character of a string:

 variableName [index]

 Example:

 print name, "starts with", name[0]

 Output:

 P. Diddy starts with P

index 0 1 2 3 4 5 6 7

character P . D i d d y

21

22

String properties
 len(string) - number of characters in a string

 (including spaces)

 str.lower(string) - lowercase version of a string

 str.upper(string) - uppercase version of a string

 Example:
 name = "Martin Douglas Stepp"

 length = len(name)

 big_name = str.upper(name)

 print big_name, "has", length, "characters"

 Output:

 MARTIN DOUGLAS STEPP has 20 characters

22

23

 raw_input : Reads a string of text from user input.

 Example:
 name = raw_input("Howdy, pardner. What's yer name? ")

 print name, "... what a silly name!"

 Output:

 Howdy, pardner. What's yer name? Paris Hilton

 Paris Hilton ... what a silly name!

raw_input

23

24

Text processing
 text processing: Examining, editing, formatting text.

 often uses loops that examine the characters of a string one by one

 A for loop can examine each character in a string in sequence.

 Example:

 for c in "booyah":

 print c

 Output:
 b
 o
 o
 y
 a
 h

24

25

Strings and numbers
 ord(text) - converts a string into a number.

 Example: ord("a") is 97, ord("b") is 98, ...

 Characters map to numbers using standardized mappings such as
ASCII and Unicode.

 chr(number) - converts a number into a string.

 Example: chr(99) is "c"

 Exercise: Write a program that performs a rotation cypher.

 e.g. "Attack" when rotated by 1 becomes "buubdl"

25

26

File processing
 Many programs handle data, which often comes from files.

 Reading the entire contents of a file:

variableName = open("filename").read()

Example:

file_text = open("bankaccount.txt").read()

26

27

Line-by-line processing
 Reading a file line-by-line:

for line in open("filename").readlines():

 statements

Example:

count = 0

for line in open("bankaccount.txt").readlines():

 count = count + 1

print "The file contains", count, "lines."

 Exercise: Write a program to process a file of DNA text, such as:

 ATGCAATTGCTCGATTAG

 Count the percent of C+G present in the DNA.

27

28

Graphics

28

29

DrawingPanel
 To create a window, create a drawingpanel and its graphical pen,

which we'll call g :

 from drawingpanel import *
 panel = drawingpanel(width, height)
 g = panel.get_graphics()

 ... (draw shapes here) ...

 panel.mainloop()

 The window has nothing on it, but we can draw shapes and
lines on it by sending commands to g .

 Example:

 g.create_rectangle(10, 30, 60, 35)

 g.create_oval(80, 40, 50, 70)

 g.create_line(50, 50, 90, 70)

29

30

Graphical commands

Command Description

g.create_line(x1, y1, x2, y2) a line between (x1, y1), (x2, y2)

g.create_oval(x1, y1, x2, y2) the largest oval that fits in a box with
top-left corner at (x1, y1) and
bottom-left corner at (x2, y2)

g.create_rectangle(x1, y1, x2, y2) the rectangle with top-left corner at
(x1, y1), bottom-left at (x2, y2)

g.create_text(x, y, text="text") the given text at (x, y)

 The above commands can accept optional outline and fill colors.
g.create_rectangle(10, 40, 22, 65, fill="red", outline="blue")

 The coordinate system is y-inverted:
(0, 0)

 (200, 100)
30

31

Drawing with loops
 We can draw many repetitions of the same item at different x/y

positions with for loops.

 The x or y assignment expression contains the loop counter, i, so that
in each pass of the loop, when i changes, so does x or y.

from drawingpanel import *

window = drawingpanel(500, 400)

g = window.get_graphics()

for i in range(1, 11):

 x = 100 + 20 * i

 y = 5 + 20 * i

 g.create_oval(x, y, x + 50, y + 50, fill="red")

window.mainloop()

 Exercise: Draw the figure at right.

31

Thanks,..

See you next week (ISA),…

Dr. Ahmed ElShafee, ACU : Summer 2014, Introduction to CS 32

