

INTERNAL MICROPROCESSOR ARCHITECTURE

- Before a program is written or instruction investigated, internal configuration of the microprocessor must be known.
- In a multiple core microprocessor each core contains the same programming model.
- Each core runs a separate task or thread simultaneously.

- A thread consists of a program counter, a register set, and a stack space.
- A task shares with peer threads its code section, data section, and operating system resources

task

Dr. Ahmed ElShafee, ACU: Spring 2017, Microprocessors

The Programming Model

- 8086 through Core2 considered program visible.
 - registers are used during programming and are specified by the instructions
- Other registers considered to be program invisible.
 - not addressable directly during applications programming

- 80286 and above contain program-invisible registers to control and operate protected memory.
 - and other features of the microprocessor
- 80386 through Core2 microprocessors contain full 32-bit internal architectures.
- 8086 through the 80286 are fully upward-compatible to the 80386 through Core2.
- Figure (following) illustrates the programming model 8086 through Core2 microprocessor.
 - including the 64-bit extensions

The programming model of the 8086 through the Core2 microprocessor including the 64-bit extensions.

The programming model of the 8086 through the Core2 microprocessor including the 64-bit extensions.

Dr. Ahmed ElShafee, ACU : Spring 2017, Microprocessors

The programming model of the 8086 through the Core2 microprocessor including the 64-bit extensions.

→ 64 bits — -				
		32 bits		
			← 16 bits	
RFLAGS		EFLAGS	FLAGS	
RIP		EIP	IP	
			CS	
			DS	
			ES	
			SS	
			FS	
			GS	

Multipurpose Registers

- RAX a 64-bit register (RAX), a 32-bit register (accumulator) (EAX), a 16-bit register (AX), or as either of two 8-bit registers (AH and AL).
- The accumulator is used for instructions such as multiplication, division, and some of the adjustment instructions.
- Intel plans to expand the address bus to 52 bits to address 4P (2⁵²~10¹⁵ =peta) bytes of memory.

Address Space (Main Memory: RAM)

- Address bus:16 bit →Address Space:64 KBytes
- Address bus:20 bit →Address Space:1 MBytes
- Address bus:32 bit →Address Space:4 GBytes
- Address bus:34 bit →Address Space:16GBytes
- Address bus:36 bit →Address Space:64GBytes
- Address bus:38 bit →Address Space:256GBytes
- Address bus:52 bit →Address Space:10¹⁵ Bytes

- RBX, addressable as RBX, EBX, BX, BH, BL.
 - BX register (base index) sometimes holds offset address of a location in the memory system in all versions of the microprocessor
- RCX, as RCX, ECX, CX, CH, or CL.
 - a (count) general-purpose register that also holds the count for various instructions
- RDX, as RDX, EDX, DX, DH, or DL.
 - a (data) general-purpose register
 - holds a part of the result from a multiplication or part of dividend before a division

 RBP
 EBP
 BP

 RSI
 ESI
 SI

 RDI
 EDI
 DI

 RSP
 ESP
 SP

- RBP, as RBP, EBP, or BP.
 - points to a memory (base pointer) location for memory data transfers
- RDI addressable as RDI, EDI, or DI.
 - often addresses (destination index) string destination data for the string instructions
- **RSI** used as RSI, ESI, or SI.
 - the (source index) register addresses source string data for the string instructions
 - like RDI, RSI also functions as a generalpurpose register

- R8 R15 found in the Pentium 4 and Core2 if 64-bit extensions are enabled.
 - data are addressed as 64-, 32-, 16-, or 8-bit sizes and are of general purpose
- Most applications will not use these registers until 64-bit processors are common.
 - the 8-bit portion is the rightmost 8-bit only
 - bits 8 to 15 are not directly addressable as a byte

۱۳

Dr. Ahmed ElShafee, ACU: Spring 2017, Microprocessors

Special-Purpose Registers

- Include RIP, RSP, and RFLAGS
 - segment registers include CS, DS, ES, SS, FS, and GS

- RIP addresses the next instruction in a section of memory.
 - defined as (instruction pointer) a code segment
- RSP addresses an area of memory called the stack.
 - the (stack pointer) stores data through this pointer

- RFLAGS indicate the condition of the microprocessor and control its operation.
- Flags are upward-compatible from the 8086/8088 through Core2.
- The rightmost five and the overflow flag are changed by most arithmetic and logic operations.
 - although data transfers do not affect them

 The EFLAG and FLAG register counts for the entire 8086 and Pentium microprocessor family.

١٧

- Flags never change for any data transfer or program control operation.
- Some of the flags are also used to control features found in the microprocessor.

- Flag bits, with a brief description of function.
- **C** (carry) holds the carry after addition or borrow after subtraction.
 - also indicates error conditions
- **P** (parity) is the count of ones in a number expressed as even or odd. Logic 0 for odd parity; logic 1 for even parity.
 - if a number contains three binary one bits, it has odd parity; If a number contains no one bits, it has even parity

- A (auxiliary carry) holds the carry (half-carry) after addition or the borrow after subtraction between bit positions 3 and 4 of the result.
- **Z (zero)** shows that the result of an arithmetic or logic operation is zero.
- **S (sign)** flag holds the arithmetic sign of the result after an arithmetic or logic instruction executes.
- **T (trap)** The trap flag enables trapping through an on-chip debugging feature.

- I (interrupt) controls operation of the INTR (interrupt request) input pin.
- **D** (direction) selects increment or decrement mode for the DI and/or SI registers.
- **O (overflow)** occurs when signed numbers are added or subtracted.
 - an overflow indicates the result has exceeded the capacity of the machine

- **IOPL** used in protected mode operation to select the privilege level for I/O devices.
- NT (nested task) flag indicates the current task is nested within another task in protected mode operation.
- **RF (resume)** used with debugging to control resumption of execution after the next instruction.
- VM (virtual mode) flag bit selects virtual mode operation in a protected mode system.

- AC, (alignment check) flag bit activates if a word or doubleword is addressed on a non-word or non-doubleword boundary.
- VIF is a copy of the interrupt flag bit available to the Pentium
 4-(virtual interrupt)
- VIP (virtual) provides information about a virtual mode interrupt for (interrupt pending) Pentium.
 - used in multitasking environments to provide virtual interrupt flags

75

- **ID (identification)** flag indicates that the Pentium microprocessors support the CPUID instruction.
 - CPUID instruction provides the system with information about the Pentium microprocessor

Segment Registers

- Generate memory addresses when combined with other registers in the microprocessor.
- Four or six segment registers in various versions of the microprocessor.
- A segment register functions differently in real mode than in protected mode.
- Following is a list of each segment register, along with its function in the system.

Dr. Ahmed ElShafee, ACU: Spring 2017, Microprocessors

- CS (code) segment holds code (programs and procedures) used by the microprocessor.
- DS (data) contains most data used by a program.
 - Data are accessed by an offset address or contents of other registers that hold the offset address
- **ES (extra)** an additional data segment used by some instructions to hold destination data.
- SS (stack) defines the area of memory used for the stack.
 - stack entry point is determined by the stack segment and stack pointer registers
 - the BP register also addresses data within the stack segment

- FS and GS segments are supplemental segment registers available in 80386–Core2 microprocessors.
 - allow two additional memory segments for access by programs
- Windows uses these segments for internal operations, but no definition of their usage is available.

7 7

Dr. Ahmed ElShafee, ACU: Spring 2017, Microprocessors

REAL MODE MEMORY ADDRESSING

- 80286 and above operate in either the real or protected mode.
- Real mode operation allows addressing of only the first 1M byte of memory space—even in Pentium 4 or Core2 microprocessor.
 - the first 1M byte of memory is called the real memory, conventional memory, or DOS memory system

Segments and Offsets

- All real mode memory addresses must consist of a segment address plus an offset address.
 - segment address defines the beginning address of any 64K-byte memory segment
 - offset address selects any location within the 64K byte memory segment
- Figure shows how the segment plus offset addressing scheme selects a memory location.

Dr. Ahmed ElShafee, ACU: Spring 2017, Microprocessors

۲9

The real mode memory-addressing scheme, using a segment address plus an offset.

- this shows a memory segment beginning at 10000H, ending at location IFFFFH
 - 64K bytes in length
- also shows how an offset address, called a displacement, of F000H selects location
 1F000H in the memory

- Once the beginning address is known, the ending address is found by adding FFFFH.
 - because a real mode segment of memory is64K in length
- The offset address is always added to the segment starting address to locate the data.
- Segment and offset address is sometimes written as 1000:2000.
 - a segment address of 1000H; an offset of 2000H

- Once the beginning address is known, the ending address is found by adding FFFFH.
 - because a real mode segment of memory is 64K in length
- The offset address is always added to the segment starting address to locate the data.
- Segment and offset address is sometimes written as 1000:2000.
 - a segment address of 1000H; an offset of 2000H

٣١

Example of real mode segment addresses.

Segment Register	Starting Address	Ending Address
2000H	20000H	2FFFFH
2001H	20010H	3000FH
2100H	21000H	30FFFH
AB00H	AB000H	BAFFFH
1234H	12340H	2233FH

34

Dr. Ahmed ElShafee, ACU: Spring 2017, Microprocessors

Default Segment and Offset Registers

- The microprocessor has rules that apply to segments whenever memory is addressed.
 - these define the segment and offset register combination
- The code segment register defines the start of the code segment.
- The **instruction pointer** locates the next instruction within the code segment.

- Another of the default combinations is the stack.
 - stack data are referenced through the stack segment at the memory location addressed by either the stack pointer (SP/ESP) or the pointer (BP/EBP)
- Figure shows a system that contains four memory segments.
 - a memory segment can touch or overlap if 64K bytes of memory are not required for a segment

30

Default 16-bit segment and offset combinations.

Segment	Offset	Special Purpose
CS	IP	Instruction address
SS	SP or BP	Stack address
DS	BX, DI, SI, an 8- or 16-bit number	Data address
ES	DI for string instructions	String destination address

Default 32-bit segment and offset combinations.

Segment	Offset	Special Purpose
CS	EIP	Instruction address
SS	ESP or EBP	Stack address
DS	EAX, EBX, ECX, EDX, ESI, EDI, an 8- or 32-bit number	Data address
ES	EDI for string instructions	String destination address
FS	No default	General address
GS	No default	General address

An application program containing a code, data, and stack segment loaded into a DOS system memory.

00000

An application program containing a code, data, and stack segment loaded into a DOS system memory.

- a program placed in memory by DOS is loaded in the TPA at the first available area of memory above drivers and other TPA programs
- area is indicated by a freepointer maintained by DOS
- program loading is handled automatically by the program loader within DOS

۱ س

Dr. /

TPA

49

 The transient program area (TPA) holds the DOS (disk operating system) operating system; other programs that control the computer system.

Dr. Ahmed ElShafee, ACU: Spring 2017, Microprocessors

Segment and Offset Addressing Scheme Allows Relocation

- Segment plus offset addressing allows DOS programs to be relocated in memory.
- A relocatable program is one that can be placed into any area of memory and executed without change.
- Relocatable data are data that can be placed in any area of memory and used without any change to the program.
- Because memory is addressed within a segment by an offset address, the memory segment can be moved to any place in the memory system without changing any of the offset addresses.

- Only the contents of the segment register must be changed to address the program in the new area of memory.
- Windows programs are written assuming that the first **2G** of memory are available for code and data.

