

Course name: Wireless Network Exam number: Midterm – Model Answer

Course Code: CNE405 Exam Date: 03/04/2016

Lecturer: Dr. Ahmed ElShafee Time Allowed: 60 minutes

Name: ______
ID:

1	2	3	4	Total
6	3	6	5	20

1. Define the following terms (6) Free path loss is the loss in signal strength of an electromagnetic wave that would result from a line-of-sight path through free space (usually air), Multipath Fading happens when portions of signals are reflected and then arrive out of order at the receiver Line of Sight That means the transmitter and receiver antennas facing each other without any opesticals including earth curvature.

2. Briefly discuss the difference between WMAN (metropolitan wireless area network, and WWAN (wireless area network). state practical application (commercially available) of each technology. (3)				
	WMAN:			
	a wireless technology support connecting different locations make them as one LAN.			
• • • • • •	It's the wireless version of MAN.			
	Like WiMax			
	WWAN:			
• • • • • •	a wireless technology used to connect the internet			
• • • • • •	the wireless version of WAN	• • • • •		
	like LTE, 3G, Edge,GSM data.			
• • • • • •				
• • • • • •				
• • • • • •		• • • • • • •		
• • • • • • •		• • • • • • • •		
• • • • • • •		• • • • • • • •		
• • • • • • •		• • • • • • • •		
		• • • • • • •		
		• • • • • • •		
		• • • • • • •		

Access point is installed in the middle of the corridor while the user sits on the ground at corridor end.

			D=4m	L M	aptop, h=0.6
	Calculating 1 st Fresnel zone shortest radius 1 st Fresnel zone radius (m) = 8.657 x (D/f) r = 8.657 x (0.004/2.4) ^{0.5} =0.35 meters	0.5			
	we need 60% clear path = $0.35 \times .6=0.21 \text{ n}$ Access point min height = $1.65+0.21=1.86$				
					0 0 0
• • • • • • • • • • • • • • • • • • • •					
• • • • • • • • • • • • • • • • • • • •					
• • • • • • •					
D = to	1 st Fresnel zone radius (m) = $8.657 \times (D/f)^{0.5}$ tal distance in kilometers quency transmitted in gigahertz.	5			

4. Assume that the access point transceiver power is 36 dbm, antenna gain is 5.2 dbi. Antenna is connected to transvers through 3 meters cable. Cable produces 0.1 dbi losses per meter. Calculate the power in dbm and milli watts level enters the laptop transceiver which is placed in 10 meters away from the AP, considering that AP transceiver is directly connected to antenna of 3 dbi gain. (5)

 FSP = 20 log (10) + 20 log (2.4) +32.45 = 20+7.6+32.45=60.05	
 Rx power = AP power – cable loss + AP antenna gain – FSL + Laptop antenna gain = $36 - 0.3 + 5.2 -60.05 +3 = -16.15$ dbm	
 Dbm=10 log mw	
 P= 10 ^ -1.615 = 0.0243 mw	
FSP=20 Log d(meters) + 20 log f (GHz) + 32.45	