

Logic Design – Tutorial 06

#	Student ID	Student Name	Grade (10)
-			

كلية المزدسة

Faculty of Engineering

Q1 Work parts (a) through (d) with the given truth table.

Α	В	C	<i>F</i> ₁	F_2	F_3	F_4
0	0	0	1	1	0	1
0	0	1	X	0	0	0
0	1	0	0	1	X	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	X	0	1	0
1	1	0	0	X	X	X
1	1	1	1	X	1	X

- (a) Find the simplest expression for F_1 , and specify the values for the don't-cares that lead to this expression.
- (b) Repeat for F_2 .
- (c) Repeat for F_3 .
- (d) Repeat for F_4 .

Sol 1 If don't cares are changed to (1, 1), respectively,

$$F_1 = A'B'C' + ABC + A'B'C + AB'C$$
$$= A'B' + AC$$

If don't cares are changed to (1, 0), respectively

$$F_2 = A'B'C' + A'BC' + AB'C' + ABC' = C'$$

If don't cares are changed to (1, 1), respectively

$$F_3 = (A + B + C)(A + B + C') = A + B$$

If don't cares are changed to (0, 1), respectively

$$F_4 = A'B'C' + A'BC + AB'C' + ABC$$
$$= B'C' + BC$$

كلبة المزدسة

Faculty of Engineering

- A combinational circuit has four inputs (A, B, C, D) and three outputs (X, Y, Z). XYZ represents a binary number whose value equals the number of 1's at the input. For example if ABCD = 1011, XYZ = 011.
 - (a) Find the minterm expansions for X, Y, and Z.
 - (b) Find the maxterm expansions for Y and Z.

Sol 2

/		
ABCD	1's	XYZ
0000	0	0 0 0
0001	1	0 0 1
0 0 1 0	1	0 0 1
0 0 1 1	2	0 1 0
0 1 0 0	1	0 0 1
0 1 0 1	2	0 1 0
0 1 1 0	2	0 1 0
0 1 1 1	3	0 1 1
1000	1	0 0 1
1001	2	0 1 0
1010	2	0 1 0
1011	3	0 1 1
1100	2	0 1 0
1 1 0 1	3	0 1 1
1110	3	0 1 1
1111	4	100

$$X = ABCD$$

$$Y = A'B'CD + A'BC'D +$$

 $A'BCD' + A'BCD +$
 $AB'C'D + AB'CD' +$
 $AB'CD + ABC'D' +$
 $ABC'D + ABCD'$

$$Z = A'B'C'D + A'B'CD' + A'BC'D' + A'BCD + AB'C'D' + AB'CD + ABC'D + ABCD'$$

كلبة المزدسة

Faculty of Engineering

$$Y = (A + B + C + D) (A + B + C + D')$$
$$(A + B + C' + D) (A + B' + C + D)$$
$$(A' + B + C + D) (A' + B' + C' + D')$$

$$Z = (A + B + C + D) (A + B' + C + D')$$

$$(A + B' + C' + D) (A' + B + C + D')$$

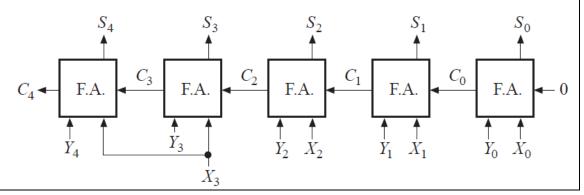
$$(A' + B + C' + D) (A' + B' + C + D)$$

$$(A' + B' + C' + D')$$

Design a circuit which will add a 4-bit binary number to a 5-bit binary number. Use five full adders. Assume negative numbers are represented in 2's complement. (*Hint:* How do you make a 4-bit binary number into a 5-bit binary number, without making a negative number positive or a positive number negative? Try writing

down the representation for -3 as a 3-bit 2's complement number, a 4-bit 2's complement number, and a 5-bit 2's complement number. Recall that one way to find the 2's complement of a binary number is to complement *all* bits to the left of the first 1.)

Sol 3 Notice that the sign bit X_3 of the 4-bit number is extended to the leftmost full adder as well.



كلبة المندسة

Faculty of Engineering

Q	4
$\overline{}$	٠

- (a) Write the switching function f(x, y) = x + y as a sum of minterms and as a product of maxterms.
- (b) Consider the Boolean algebra of four elements $\{0, 1, a, b\}$ specified by the following operation tables and the Boolean function f(x, y) = ax + by where a and b are two of the elements in the Boolean algebra. Write f(x, y) in a sum-of-minterms form.
- (c) Write the Boolean function of part (b) in a product-of-maxterms form.
- (d) Give a table of combinations for the Boolean function of Part (b). (*Note*: The table of combinations has 16 rows, not just 4.)
- (e) Which four rows of the table of combinations completely specify the function of Part (b)? Verify your answer.

0	,				a					a	
0	1	0	0	1	a	b	0	0	0	0	0
1	0				1					a	
a					a		a	0	a	a	0
b	a	b	b	1	1	b	b	0	b	0	b

كلبة المندسة

Faculty of Engineering

```
Sol 4
       f = x(y+y')+y(x+x') = xy+xy'+x'y
              (sum-of-minterms)
       f = x + y already in product-of-maxterms form
       (b)
      f = ax + by = ax(y+y') + by(x+x')
            = axy + axy' + bxy + bx'y = (a+b)xy + axy' + bx'y
            = xy + axy' + bx'y
       (c)
      f' = (a'+x')(b'+v') = (b+x')(a+v')
        = ab + ax' + by' + x'y' = ax'(y+y') + by'(x+x') + x'y'
        = ax'v + ax'v' + bv'x + bv'x' + x'v'
        = ax'y+by'x+x'y'(a+b+1) = ax'y+by'x+x'y' so
      f = (a'+x+y')(b'+x'+y)(x+y)
         = (b+x+y')(a+x'+y)(x+y)
       Alternatively.
      f = ax + by = (a+by)(x+by) = (a+b)(a+y)(x+b)(x+y)
         = (a+xx'+v)(b+vv'+x)(x+v)
         = (a+x+y)(a+x'+y)(b+x+y)(b+x+y')(x+y)
         = [(a+x+y)(b+x+y)(x+y)](a+x'+y)(b+x+y')
         = (ab+x+y)(a+x'+y)(b+x+y')
         =(x+y)(a+x'+y)(b+x+y')
```


كلبة المزدسة

Faculty of Engineering

VAL	DIAN UNIVERSITY		Name America	437-1	.50.000	_
		(d)				(e)
		xy	\int	xy	\int	f(x,y) is completely
		00	0	a 0	a	specified by the
		OI	b	a 1	1	coefficients of the
		0 a	0	a a	a	minterms in the sum of
		0b	b	ab	1	minterms expression.
		10	а	b 0	0	These coefficients are
		11	1	b 1	b	determined by the value
		1 a	a	b a	0	of the function for xy =
		1 b	1	b b	b	00, 01, 10 and 11.