

Electric Circuits II — Tutorial 01 Source Free RC Circuits

كلبة المزدسة

Faculty of Engineering

Q1

7.1 In the circuit shown in Fig. 7.81

$$v(t) = 56e^{-200t} \text{ V}, \quad t > 0$$

$$i(t) = 8e^{-200t} \,\text{mA}, \quad t > 0$$

- (a) Find the values of R and C.
- (b) Calculate the time constant τ .
- (c) Determine the time required for the voltage to decay half its initial value at t = 0.

Sol 1

(a) $\tau = RC = 1/200$

For the resistor, V=iR= $56e^{-200t} = 8Re^{-200t} \times 10^{-3}$ \longrightarrow $R = \frac{56}{8} = \frac{7 \text{ k}\Omega}{8}$

$$C = \frac{1}{200R} = \frac{1}{200X7X10^3} = \frac{0.7143 \mu F}{1}$$

- (b) $\tau = 1/200 = 5 \text{ ms}$
- (c) If value of the voltage at = 0 is 56.

$$\frac{1}{2}x56 = 56e^{-200t}$$
 \longrightarrow $e^{200t} = 2$

$$200t_{\circ} = \ln 2 \longrightarrow t_{\circ} = \frac{1}{200} \ln 2 = \underline{3.466 \text{ ms}}$$

كلية المزدسة

Faculty of Engineering

كلبة المندسة

Faculty of Engineering

Q3

7.5 Using Fig. 7.85, design a problem to help other students better understand source-free RC circuits.

Figure 7.85

For Prob. 7.5.

Sol 3

Let v be the voltage across the capacitor. For t < 0,

$$V(0^{-}) = \frac{4}{2+4}(24) = 16 \text{ V}$$

For t >0, we have a source-free RC circuit as shown below.

$$\tau = RC = (4+5)\frac{1}{3} = 3s$$

كلبة المزدسة

Faculty of Engineering

$$v(t) = v(0)e^{-t/\tau} = 16e^{-t/3} V$$

$$i(t) = -C \frac{dv}{dt} = -\frac{1}{3}(-\frac{1}{3})16e^{-t/3} = \underline{1.778e^{-t/3} A}$$

Q4

7.7 Assuming that the switch in Fig. 7.87 has been in position A for a long time and is moved to position B at t = 0, Then at t = 1 second, the switch moves from B to C. Find $v_C(t)$ for $t \ge 0$.

Figure 7.87

For Prob. 7.7.

Sol 4

Step 1. Determine the initial voltage on the capacitor. Clearly it charges to 12 volts when the switch is at position A because the circuit has reached steady state.

This then leaves us with two simple circuits, the first a 500 Ω resistor in series with a 2 mF capacitor and an initial charge on the capacitor of 12 volts. The second circuit which exists from t=1 sec to infinity. The initial condition for the second circuit will be $v_C(1)$ from the first circuit. The time constant for the first circuit is (500)(0.002)=1 sec and the time constant for the second circuit is (1,000)(0.002)=2 sec. $v_C(\infty)=0$ for both circuits.

Step 1.

$$v_C(t) = 12e^{-t}$$
 volts for $0 \le t \le 1$ sec and $= 12e^{-1}e^{-2(t-1)}$ at $t = 1$ sec, and
$$= 4.415e^{-2(t-1)}$$
 volts for $1 \sec \le t \le \infty$.

12e^{-t} volts for $0 \le t \le 1$ sec, 4.415e^{-2(t-1)} volts for $1 \sec \le t \le \infty$.

كلبة المندسة

Faculty of Engineering

Q5

7.9 The switch in Fig. 7.89 opens at t = 0. Find v_o for t > 0.

igure 7.89

or Prob. 7.9.

Sol 5

For $t \le 0$, the switch is closed so that

$$V_o(0) = \frac{4}{2+4}(6) = 4 \text{ V}$$

For t >0, we have a source-free RC circuit.

$$\tau = RC = 3x10^{-3}x4x10^3 = 12s$$

$$v_o(t) = v_o(0)e^{-t/\tau} = 4e^{-t/12} V.$$