

Agenda

- Linearity Property
- Super position
- Source transformation

Dr. Ahmed ElShafee, ACU: Fall 2015, Electric Circuits

Linearity Property

- Linearity is the property of an element describing a linear relationship between cause and effect.
- The homogeneity property requires that if the input (also called the *excitation*) is multiplied by a constant, then the output (also called the *response*) is multiplied by the same constant

$$v = iR$$

• In general, a circuit is linear if it is both additive and homogeneous.

$$p = i^2 R = v^2 / R$$

- the relationship between power and voltage (or current) is nonlinear
- Therefore, the theorems covered in this lecture are not applicable to power

- consider the linear circuit shown in Fig
- The linear circuit has no independent sources inside it.
- It is excited by V_s a voltage source which serves as the input. v_s
- The circuit is terminated by a load *R*.
- We may take the current i through R as the output.

- If Vs = 10 volt and I = 2 Amp
- So according to linearity priciple
- If Vs become 1 Volt then I = 0.2 Amp

Dr. Ahmed ElShafee, ACU: Fall 2015, Electric Circuits

Dr. Ahmed ElShafee, ACU: Fall 2015, Electric Circuits

Example 01

For the circuit in Fig. 4.2, find I_o when $v_s = 12 \text{ V}$ and $v_s = 24 \text{ V}$.

Example 02

For the circuit in Fig. 4.3, find v_o when $i_s = 30$ and $i_s = 45$ A.

Answer: 40 V. 60 V.

Assume $I_o = 1$ A and use linearity to find the actual value of I_o in the circuit of Fig. 4.4.

$$I_o = 3 \text{ A}$$

Dr. Ahmed ElShafee, ACU: Fall 2015, Electric Circuits

Example 04

Assume that $V_o = 1$ V and use linearity to calculate the actual value of V_o in the circuit of Fig. 4.5.

Answer: 16 V.

Dr. Ahmed ElShafee, ACU: Fall 2015, Electric Circuits

Superposition

 The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.

Steps to Apply Superposition Principle:

- Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using the techniques covered in Chapters 2 and 3.
- 2. Repeat step 1 for each of the other independent sources.
- Find the total contribution by adding algebraically all the contributions due to the independent sources.

Example 05

• Use the superposition theorem to find v in the circuit of Fig.

10 V

Using the superposition theorem, find v_o in the circuit of Fig.

Answer: 7.4 V.

١,

Dr. Ahmed ElShafee, ACU: Fall 2015, Electric Circuits

Example 07

Find i_o in the circuit of Fig.

 $i_o = -\frac{8}{17} = -0.4706 \text{ A}$

1 2

Dr. Ahmed ElShafee, ACU: Fall 2015, Electric Circuits

Example 08

Use superposition to find v_x in the circuit of Fig.

$$v_x = 31.25 \text{ V}.$$

Example 09

For the circuit in Fig. 4.12, use the superposition theorem to find i.

$$i = i_1 + i_2 + i_3 = 2 - 1 + 1 = 2 A$$

Find I in the circuit of Fig. 4.14 using the superposition principle.

Answer: 375 mA.

Dr. Ahmed ElShafee, ACU : Fall 2015, Electric Circuits

• Source transformation also applies to dependent sources, provided we carefully handle the dependent variable

Source Transformation

• substitute a voltage source in series with a resistor for a current source in parallel with a resistor, or vice versa, as shown in Fig.

A source transformation is the process of replacing a voltage source v_s in series with a resistor R by a current source i_s in parallel with a resistor R, or vice versa.

1/

Dr. Ahmed ElShafee, ACU: Fall 2015, Electric Circuits

Example 11

Use source transformation to find v_o in the circuit of Fig.

= 3.2 V

Find i_o in the circuit of Fig. 4.19 using source transformation.

Answer: 1.78 A.

71

Dr. Ahmed ElShafee, ACU: Fall 2015, Electric Circuits

Example 13

Find v_x in Fig. 4.20 using source transformation.

$$v_x = 3 - i = 7.5 \text{ V}.$$

Dr. Ahmed ElShafee, ACU: Fall 2015, Electric Circuits

Example 14

Use source transformation to find i_x in the circuit shown in Fig.

Answer: 7.059 mA.

